RLC
Filter Circuit step response
![]()
|
LPF under-damped response
\(\dfrac{1}{s}\cdot\dfrac{1}{s^2+2\zeta s + 1}\Longrightarrow \dfrac{1}{s\left[(s+a)^2 + b^2\right]}\)
Where a = \(\zeta\) and b = \(\sqrt{1-\zeta^2}\)
Using Laplace tables this converts to: -
\(1 - \dfrac{1}{\omega_d}\cdot e^{-\zeta t}\cdot \sin(\omega_d t + \phi)\)
Where \(\omega_d \) (the normalized damped frequency)
= \(\sqrt{1-\zeta^2}\) and \(\phi=\arccos(\zeta)\)
|
HPF under-damped response
\(\dfrac{s}{s^2+2\zeta s + 1}\Longrightarrow \dfrac{s}{(s+\zeta)^2 + (1-\zeta)}\)
\(\small =\dfrac{s+\zeta}{(s+\zeta)^2 + (1-\zeta)} - \dfrac{\zeta}{(s+\zeta)^2 + (1-\zeta)}\normalsize\)
Using Laplace tables this converts to: -
\(e^{-\zeta t}\left[ \cos(\omega_d t)-\frac{\zeta}{\omega_d}\cdot\sin(\omega_d t)\right]\)
Where \(\omega_d \) (the normalized damped frequency)
= \(\sqrt{1-\zeta^2}\) |
LPF critically-damped response
\(\dfrac{1}{s}\cdot\dfrac{1}{s^2+2\zeta s + 1} \Longrightarrow \dfrac{1}{s^3+2s^2 + s}\)
This reduces to: -
\(\dfrac{1}{s}-\dfrac{1}{s+1} - \dfrac{1}{(s+1)^2}\) Using Laplace tables this converts to: - \(1- e^{-t}\cdot(1 + t)\) |
HPF critically-damped response
\(\dfrac{s}{s^2+2\zeta s + 1} \Longrightarrow \dfrac{s}{s^2+2s + 1}\)
This reduces to: -
\(\dfrac{1}{s+1}-\dfrac{1}{(s+1)^2}\)
Using Laplace tables this converts to: -
\(e^{-t}\cdot(1 - t)\)
|
LPF over-damped response
\(\dfrac{1}{s}\cdot\dfrac{1}{s^2+2\zeta s + 1} \Longrightarrow \dfrac{1}{s}\cdot \dfrac{1}{(s+a)(s+b)}\)
where \(ab=1\) thus, it follows that: -
\(a=\zeta-\sqrt{\zeta^2 - 1}\) \(b=\zeta+\sqrt{\zeta^2 - 1}\)
And \((b-a) = 2\sqrt{\zeta^2-1}\)
Using Laplace tables this converts to: -
\(1 - \dfrac{b}{b-a}\cdot e^{-at} + \dfrac{a}{b-a}\cdot e^{-bt}\)
|
HPF over-damped response
\(\dfrac{s}{s^2+2\zeta s + 1} \Longrightarrow \dfrac{s}{(s+a)(s+b)}\)
where \(ab=1\) thus, it follows that: -
\(a=\zeta-\sqrt{\zeta^2 - 1}\) \(b=\zeta+\sqrt{\zeta^2 - 1}\)
And \((a-b) = -2\sqrt{\zeta^2-1}\)
Using Laplace tables this converts to: -
\(\dfrac{a}{a-b}\cdot e^{-at} - \dfrac{b}{a-b}\cdot e^{-bt}\) |
Ω σ μ τ ω β δ η θ λ π ζ ∞ ° √ Δ ∂ ∫ Ʃ ± ≈ ≠ µ Ω ± ÷ Θ « » ≦ ≧ Σ Φ ε • θ λ ρ ω κ ² ³ ½ ¼ ¾ ° ∞ ∫≈ ≠ ≡ Ξ ∑ π Π © ®